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The 3-state Potts model in (2 + 1) dimensions 

C J Hamer, M Aydin, J Oitmaa and H-X He 
School of Physics, University of New South Wales, PO Box 1, Kensington, NSW 2033, 
Australia 

Received 3 April 1990 

Abstract. The 3-state Potts model in (2 + 1) dimensions is studied using series and Monte 
Carlo methods. High temperature series for the vacuum energy, mass gap and susceptibility 
are computed on the square and triangular lattices using linked cluster expansions. Monte 
Carlo estimates are obtained by the stochastic truncation method. The model is found to 
undergo a weak first-order transition, as in the Euclidean version of the model. 

1. Introduction 

The 3-state Potts model in three dimensions is an interesting one, and it is a delicate 
question to determine whether it undergoes a first-order or a second-order phase 
transition. The model has been studied in the past using a variety of methods, including 
series expansions (Straley 1974, Kim and Joseph 1975, Miyashita et al1979), renormali- 
sation group analyses (Nienhuis et a1 1981, Newman et al 1984), and Monte Carlo 
simulations (Blote and Swendsen 1979, Knak Jensen and Mouritsen 1979, Herrmann 
1979, Wilson and Vause 1987). After some early uncertainty, the consensus was that 
the phase transition in the model is weakly first order. 

Interest in the model was recently rekindled by some studies of SU(3) gauge theory 
at finite temperature. This theory exhibits a global 2, symmetry corresponding to the 
centre of the SU(3) group, and hence Svetitsky and Yaffe (1982a, b) have predicted 
that the deconfinement transition in the four-dimensional gauge theory should lie in 
the same universality class as the Z3 or 3-state Potts model in three dimensions. The 
deconfinement transition has been thought hitherto to be first order, in agreement with 
this prediction; but in a large Monte Carlo simulation, the APE collaboration (Bacilieri 
et a1 1988) found a very large correlation length, increasing with lattice size, which 
would appear to indicate a second-order transition. In another study the Columbia 
group (Brown et a1 1988) found that the latent heat is less than had been estimated 
previously, but that the transition is still first-order. In fact a situation like this is by 
no means unfamiliar at a weak first-order transition. The 5-state Potts model in two 
dimensions can be exactly solved at the critical point (Baxter 1973), and it is known 
to undergo a first-order transition: but its correlation length or inverse mass gap at the 
transition point, while finite, is exponentially large, and quite inaccessible to approxi- 
mate numerical methods (Hamer 1981). 

The debate over the deconfinement transition has stimulated new studies of the 
3-state Potts model, and several Monte Carlo treatments (Fukugita and Okawa 1989, 
Gavai et al 1989, Gupta e? a1 1990) have recently appeared, concentrating particularly 
on the correlation length. They conclude that the correlation length remains finite, 
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though large, and develops a discontinuity at the critical point. Thus the transition is 
confirmed as being first order. 

In the present work we have set out to study the quantum Hamiltonian version of 
the 3-state Potts model in (2+ 1) dimensions: this has not been studied before, to our 
knowledge. We use both series and Monte Carlo methods. Now in fact Monte Carlo 
techniques are not so well established in the quantum Hamiltonian framework as they 
are in the Euclidean framework. Several methods of this sort have been proposed in 
the context of lattice gauge theory (Heys and Stump 1983, Blankenbecler and Sugar 
1983, Chin et a1 1984, DeGrand and Potvin 1985, Barnes et a1 1986), but there have 
been very few applications to lattice spin systems, with the notable exception of the 
studies by Nightingale and Blote (1986, 1988). The method we use here is a variant 
technique called ‘stochastic truncation’ (Allton et a1 1989), which is in fact quite close 
to that used by Nightingale and Blote. 

The methods we use are briefly reviewed in section 2. Our results are presented in 
section 3, beginning with some ‘high-temperature’ series, and proceeding to the Monte 
Carlo estimates. Our conclusions are summarised in section 4. The transition does 
indeed appear to be weakly first order, with a finite spontaneous magnetisation at the 
critical point, and a mass gap which drops discontinuously to zero. The accuracy and 
efficiency of the stochastic truncation method appear quite good. 

2. Methods 

The cluster expansion methods which we have used to calculate the high-temperature 
series were reviewed in another recent paper (He et a1 1990), so we will not go into 
detail here. Suffice it to say that, for instance, the ground state energy per site can be 
written as a sum of contributions from all the linked clusters with different topologies 
which can be embedded on the lattice, each weighted by its appropriate lattice constant. 
The main stages in the calculation are: first, the generation of a list of linked clusters, 
each with its lattice constant and a list of all the sub-clusters which can be embedded 
in it; second, calculation of a series for the ground-state energy of each cluster, from 
which all the sub-cluster terms are subtracted, to leave the intrinsic or ‘cumulant’ 
cluster energy. These are then combined to give the bulk result. The first stage is model 
independent, but the second obviously depends on the particular model. It involves 
constructing a Hamiltonian matrix for each given cluster, from which the perturbation 
series is calculated. The size of the matrix is proportional to 3“. for a cluster of n, 
sites or vertices in the 3-state Potts model, and this is the limiting factor in the calculation. 
The longest calculation was that of the mass gap on the triangular lattice, which 
involved some 736 clusters, and occupied about 4 x lo4 CPU seconds on an IBM3090 
machine. 

The stochastic truncation method (Allton et a1 1989) used in the Monte Carlo 
calculations is a version of the simple power method for finding the dominant eigenvalue 
and eigenvector of a matrix H. Starting from some arbitrary vector It,b(’)), the dominant 
eigenvector is ‘projected out’ by multiplying with the matrix H many times. Suppose 
that we are working in some arbitrary basis of vectors Ii), and that the dominant 
eigenvector I&) can be expanded 

where for simplicity we assume that the amplitudes c: are positive real numbers. In  
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the stochastic truncation scheme, one constructs a sequence of (unnormalised) approxi- 
mations to lq?J0): 

where the ‘occupation numbers’ nj” are now integers rather than real numbers. The 
vector is obtained from by an application of the matrix H, as in the 
power method, according to the following rules. Define an ‘ensemble size’ 

( 2 . 3 )  

and suppose we begin from some arbitrary initial trial vector I$(”) and ‘score’ 
Then at each succeeding iteration m, 
generated by the two basic rules: 

a new trial vector and score S ( m )  are 

Here R ( x )  is a ‘rounding function’, according to which x is rounded either up or down 
to an integer by a Monte Carlo procedure (Allton et a1 1989), such that on averaging 
over many trials 

( R ( x ) )  = x. (2.6) 
Thus equation (2.4) implements the power method in a stochastic fashion, while 
equation (2.5) is merely an auxiliary rule designed to equilibrate the ensemble size N ( m ) .  

Assume the system reaches an equilibrium after many iterations, where N‘” and 
S‘” fluctuate around some fixed average values. Then comparing (2.4) with the 
eigenvalue equation 

1 HkiCp = EoCi (2.7) 
I 

we see that on average 

( n k )  CY cok (2.8) 

( S )  = Eo (2.9) 

and the eigenvalue is given by 

providing we ignore correlations between ni” and S‘” (this turns out to be a good 
approximation in practice). So the trial vectors I $(”) provide discrete, stochastic 
approximations to the dominant eigenvector Iq?Jo), according to (2.8). For basis states 
with very small amplitudes cy, the occupation numbers n j m )  will usually be zero, 
corresponding to an effective truncation of the set of basis states at each iteration. 

The quantum Hamiltonian of the 3-state Potts model in two space and one time 
dimensions can be written (Mittag and Stephen 1971, Solyom 1981) 

(2.10) 

where i labels the sites on a two-dimensional square lattice of M 2  sites, (U) denotes 
nearest-neighbour pairs of sites, A is the coupling (corresponding to the inverse 
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temperature in the Euclidean formulation), and L,, R: are operators at each site which 
in a basis of eigenstates of L, obey the rules: 

L,It)= 414) I , = O ,  1 or 2 (2.11) 

R:llJ = I(  I ,  * 1) mod 3) (2.12) 

and 

so that R: are raising and lowering operators for the spin I , ,  modulo 3. Periodic 
boundary conditions are assumed. To ensure that the ground state is the dominant 
eigenstate, we actually applied the stochastic truncation method to the matrix 

H ’ = 3 M 2 - H .  (2.13) 

The matrix elements of H’ are all either positive or zero. The initial state I$(’)) was 
simply taken as the A = 0 ground state, with 1, = 0 on every site. 

The efficiency and accuracy of the method depend crucially on the way in which 
equation (2.4) is implemented. One does not want to waste time generating a final 
state J k )  at the mth iteration if its occupation number nl,”’ is going to be rounded to 
zero. Now for a given initial state Ii), the sum of the off-diagonal terms 

(2.14) 

is known a priori: there are 4 M 2  link operators which can act on state i i ) ,  and H;,  = A 
for each one. So we adopt the technique of rounding T to an integer initially, and 
choosing of the 4 M 2  link operators at random to generate final states Ik), each with 
occupation number nk” = 1 (Hamer and Court 1990). 

We chose to ‘symmetrise’ (Irving and Thomas 1982) our basis states under lattice 
translations, rotations and reflections. This involves performing these lattice symmetry 
operations on each new state, counting how many times the resulting configurations 
are degenerate, and choosing a standard representative from among them. The sector 
of states possessing these symmetries is much smaller than the full basis set, and thus 
one achieves higher accuracy; but the time required to symmetrise the states is expen- 
sive, and would not be worthwhile for lattices larger than those we have considered 
here. The states were also gathered together into a master file by a hash-sorting algorithm 
as they were generated. 

Some form of variational guidance is necessary to help the approach to equilibrium 
and increase the accuracy of the Monte Carlo estimates (Chin et a1 1984, Hamer and 
Court 1990). One way of implementing this is to perform a similarity transformation 

I+’) = U $ )  (2.15) 

H’= UHU-‘ (2.16) 

where 

U, = (i/xo)&, (2.17) 

and Ixo) is some approximation to the true ground-state eigenvector. The eigenvalues 
are unchanged, and the algorithm is applied as before to I$‘) and H’; but the accuracy 
may be much improved. We have chosen to apply an exponential cut-off on the 
‘unperturbed’ energy, with 

(ilxo) = exp(-cE3 (2.18) 
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where c is some constant, and E? is the eigenvalue of 

H 0 = 2 C  I [ l - c o s ( T L l ) ]  (2.19) 

corresponding to basis state Ii). The constant c is varied until the estimated error in 
the average score reaches a minimum. 

Ground state expectation values can be computed from the expression 

(2.20) 

where Q is the operator whose expectation value is wanted, and I+("')), I+"")) are two 
independently evolved ensembles. We cannot use the same ensemble l+("'j) on both 
sides, because although ( n k ) a c i  from equation (2.8), it does not follow that (n i>a ( c i ) ' .  
We have used this method to estimate the derivative of E, with respect to A. If 

H=H, -AV (2.21) 

then by the Feynman-Hellmann theorem 

(2.22) 

so the required derivative can be deduced from the ground-state expectation value 
of H,. 

3. Results 

3.1. Series 

Using the linked cluster expansion method, 'high temperature' series in A have been 
calculated for the ground-state energy, the mass gap, and the susceptibility of the 
model for both square and triangular lattices. The magnetic field term to be added to 
the Hamiltonian (2.10) was taken as 

H,=hC(RT+R;)  

and the susceptibility is defined as 

I 

(3.2) 

The series coefficients are listed in table 1. We have performed a standard Dlog 
Pad6 analysis (Guttmann 1989) of the series for the mass gap and the susceptibility, 
as for a model with a second-order phase transition. The results are exhibited in table 
2. The critical parameters deduced from this analysis aret 

v = 0.54( 2) (3.3) 

susceptibility: A Y )  = 0.388(2) y = 0.97(2). (3.4) 

A ( s )  = 0.388(3) mass gap: 

t A superscript (s) is added to the series estimate, to distinguish it from what follows. 
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Table 1. High temperature series in A for the ground-state energy per site E o / M 2 ,  the 
susceptibility x and the mass gap F. Coefficients of A "  are listed for the square and 
triangular lattices. 

n Eo/ M 2  X F 

Square lattice 
0 0 
1 0 
2 -0.666 666 666 667 
3 -0,111 111 111 111 
4 -0.314814 814 815 
5 -0.290 466 392 318 
6 -0.526 034 522 176 
7 -0.776 812 477 773 
8 -1.463 119 284 70 

Triangular lattice 
0 0 
1 0 
2 - 1,000 000 000 000 
3 .-0.833 333 333 333 
4 -1.416 666 666 67 
5 -2.765 946 502 06 
6 -6.475 723 022 41 
7 -16.440 536 408 3 
8 -45.012 324 962 2 

1.333 333 333 33 
3.555 555 555 56 
9.185 185 185 19 

23.111 111 111 11 
59.684 499 314 1 

151.820 098 562 
390.632 163 601 
999.968 952 092 

2 572.682 391 01 

1.333 333 333 33 
5.333 333 333 33 

20.888 888 888 9 
82.222 222 222 2 

324.008 230 453 
1 279.477 747 29 
5 061.705 359 73 

20 057.179 177 2 
79 586.694 175 1 

3.000 000 000 00 
-4.000 000 000 00 
-3.333 333 333 33 
-0.555 555 555 555 

9.675 582 990 40 
-11.697 5308642 

-68.068 110 806 3 
112.475 516 097 

-505.227 530 390 

3.000 000 000 00 
-6.000 000 000 00 
-7.000 000 000 00 

-1 1.166 666 666 7 
-30.212 962 963 0 
-76.442 386 831 3 

-251.101 566 072 
-736.072 480 059 

-2 581.293 256 92 

Table 2. Dlog Pad6 approximants to the mass gap and susceptibility on the square lattice. 
An asterisk denotes a defective approximant. 

N 

L 

3 
4 
(Susceptibility) 
2 
3 
4 

[ N I N - I I  [ N I N I  C N I N + l I  
Pole Residue Pole Residue Pole Residue 

0.2447 (0.108) 0.3852 (0.522) 0.3887 (0.539) 
0.3903 (0.549) 0.3886 (0.538) 0.3887 (0.539)* 
0.3871 (0.526) 

0.3552 (-0.710) 0.3864 (-0.955) 0.3889 (-0.979) 

0.3869 (-0.951) 
0.3896 (-0.987) 0.3883 (-0.972) - 

The critical points deduced from the two series are in perfect agreement with each 
other. The question to be settled, of course, is whether a first-order transition supervenes 
before this putative second-order critical point is reached. 

3.2. Monte Carlo 

The stochastic truncation method discussed in section 2 has been used to calculate the 
lowest energy eigenvalues in both the spin-0 and spin-1 sectors of the Hamiltonian 
(2.10), together with their derivatives, for lattice sizes M = 2 up to 5 .  The results are 
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given in tables 3-6. For each data point, 2000 iterations were carried out, of which the 
first 500 were discarded, to ensure that the system had reached equilibrium. The 
remaining scores were averaged over bins of up to 256 iterations, and then the bin 
averages were treated as statistically independent data points in estimating the statistical 
error (Binder 1976). In this way the effect of correlations between successive scores 
was minimised. The initial ensemble size varied, but for the M = 5 lattice at A = 0.40, 
for instance, it was N(O) = lo4, this calculation required 3000 CPU seconds on a Fujitsu 
VPlOO machine, or 0.15 ms per state per iteration. 

The results for the ground-state energy per site are listed in table 3 and graphed 
in figure 1. The convergence of the finite-lattice results is quite rapid, and by crudely 
plotting them against 1 / M 2  (Privman and Fisher 1983) reasonable estimates of the 
bulk limit M +CO can be obtained, as given in table 3. Also shown are some series 
estimates, obtained from the [4/4] Pad6 approximant to the ground-state energy series. 
The agreement between the two methods is very good, up to A =0.35; beyond that, 
the finite-lattice estimates swing away from the series line, indicating a phase transition 
between A =0.35 and 0.40. 

Figure 1. Graph of the ground-state energy per site, E o / M 2 ,  as a function of coupling A. 
The finite-lattice Monte Carlo results are shown as broken curves, while the full curve is 
the [4/4] Pad6 approximant to the series of table 1 .  

Table 4 and figure 2 show results for the derivative of the ground-state energy. For 
the M = 5 lattice the results became unreliable beyond the critical region, due to a 
very small overlap between the two independent ensembles used in equation (2.20), 
so no values are listed there. In any case, it is clear that a sharp change in the slope 
is developing at the phase transition. Whether the change is discontinuous, as at a 
first-order transition, or smooth as at a second-order transition, cannot really be decided 
on the basis of this data. The total change in slope over the transition region is about 
1.4 * 0.3. 

Table 5 and figure 3 show results for the mass gap between the spin-1 sector and 
the spin-0 sector. Once again, the agreement between the Monte Carlo and series 
estimates is excellent, out to A =0.35. The convergence of the finite-lattice results to 
the bulk limit is not monotonic, in contrast to the usual behaviour for a second-order 
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Figure 2. Derivative of the energy per site, ( l /M*)(d€ , /dA) ,  as a function of coupling A. 
The broken curves are the Monte Carlo results for lattice size M, while the full curve is 
the derivative of the [4/4] series approximant. The broken vertical line marks the estimated 
position of the phase transition. 

\ 

Figure 3. The mass gap F as a function of coupling A. The broken curves are Monte Carlo 
results, the full curve is the [4/4] Pade approximant to the series of table 1, and the broken 
vertical line marks the expected phase transition. 

transition; and a distinct step-like structure appears to be developing around A = 0.38 
for the larger lattices. Beyond that the mass gap is clearly converging rapidly to zero. 
This behaviour seems to indicate a first-order transition, albeit with a rather small 
discontinuity in the mass gap. 

Table 6 and figure 4 show the derivative of the mass gap. A peak is clearly seen, 
getting higher and sharper as the lattice size increases. This behaviour could be 
consistent with either a first-order or a second-order transition, 

In order to tie down the phase transition more precisely, we have carried out a 
search for the 'pseudo-critical points', given in finite-size scaling theory as follows. 
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0 0.1 0.2 0.3 0.L 0.5 

Figure 4. Derivative of the mass gap, -aF/aA, as a function of coupling A. The broken 
curves are Monte Carlo results, and the full curve the slope of the [4/4] approximant to 
the mass gap. 

Define the ‘scaled mass gap ratio’ 

where & ( A )  is the mass gap for lattice size M, then the pseudo-critical point A &  for 
lattice size M is taken as (Hamer and Barber 1981) the point such that 

R ~ ( A & )  = 1 

consistent with the hypothesis that F M ( A )  scales like 1/M at the critical point. The 
sequence of A &  values actually converges to the critical point A, as M + 00, no matter 
whether the transition is second-order or first-order (Hamer 1983). Table 7 lists the 
values A &  obtained for M = 2 to 5. They converge quite rapidly, and a plot against 
1/M2 leads to a bulk limit of A,=0.379(3). This lies short of the series value A:), 
although only by 2% or so, and thus indicates that the transition is indeed first-order, 
Taking A,=0.379, we estimate from the mass-gap data discussed above that the 
discontinuity in the mass-gap at the transition is 0.410.07 ,  or 15 *2% of its maximum 
value. 

Table 7. Table of pseudo-critical points AL and finite-lattice estimates of the spontaneous 
magnetisation M M  as a function of lattice size M, together with their estimated bulk limits. 

2 0.2975 (1) 1.1612 
3 0.3644 (1) 1.0440 (2) 
4 0.376 (1) 0.953 (4) 

CO (estimated) 0.379 (3) 0.64 (10) 
5 0.377 (3) 0.91 (4) 
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A finite-size scaling estimate can also be obtained for the spontaneous magnetisation 
at the transition. As discussed by Uzelac (1980) and Hamer (1982), the best results 
are given by an indirect technique, involving matrix elements of the magnetic field 
operator. In the low-temperature regime, we expect three degenerate ground states 
Ib0), 1b2) in this model, belonging to the three spin sectors L = 0, 1 and 2 
respectively, where L = Z i  li is the total spin. Considering the 3 x 3 sub-matrix of the 
Hamiltonian spanned by these three states alone, one finds that the spontaneous 
magnetisation is given by 

1 dEo 1 
M O - M + W  - lim (7 M -)= ah M + W  lim ( 2 4  a:, + a&+ a:* 

h+O 

(3.6) 

and similarly for aO2 and a12 .  Using an approach similar to that outlined in section 
2, values were obtained? for these matrix elements at the pseudo-critical points, giving 
rise to the magnetisation values listed in table 7. A crude plot against 1/M extrapolates 
to a bulk limit MO = 0.64* 0.2, or 43 * 7% of its maximum possible value. This provides 
very clear evidence of a first-order transition. 

4. Conclusions 

Using linked cluster expansion methods, high temperature series expansions were 
calculated for the ground-state energy, the mass gap and the susceptibility of this 
model. A Pad6 analysis of the square lattice series indicates a putative or incipient 
second-order critical point at coupling A?'  = 0.388(2), with indices y = 0.97(2), Y = 
0.54(2). 

A finite-size scaling analysis of our Monte Carlo data shows that actually a first-order 
transition occurs just 2% short of this incipient second-order point, at A, = 0.379(3). 
The second-order critical point indicated by the series analysis may then be interpreted 
as a spinodal pseudo-transition, such as those discussed in previous series analyses by 
Ditzian and Kadanoff (1979), and Privman and Schulman (1982), for example. 

The clearest evidence of the first-order transition comes from the spontaneous 
magnetisation estimates, which approach a finite bulk limit of 0.64 * 0.1, or 43 f 7% of 
the maximum possible value. This is in good accord with Euclidean Monte Carlo 
studies (Knak Jensen and Mouritsen 1979, Wilson and Vause 1987, Gavai et a1 1989), 
which find a discontinuity of about 40% in the order parameter at the transition point. 
Thus it appears that the relative size of the discontinuity may even be a universal 
parameter, although we know of no theoretical reason for this at a first-order transition 
in three dimensions. 

The mass gap also shows signs of a first-order transition, with a finite step developing 
at the transition point. Combining series and Monte Carlo information, we estimate 
the discontinuity as 0.44*0.07, or 15 *2Oh of its maximum value. Finally, the derivative 
of the ground-state energy changes by 1.4iO.3 in total over the transition region, but 
it is impossible to tell whether this is due to a smooth transition, or an actual 

t These estimates required the evolution of six independent ensembles, two for each spin sector. 
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discontinuity, i.e. a ‘latent heat’. The Euclidean Monte Carlo studies (Knak Jensen 
and Mouritsen 1979, Wilson and Vause 1987, Gavai et a1 1989), show a rather small 
discontinuity embedded within a larger, smooth variation. 

The emerging picture is that of a weak first-order transition, as found in the 
Euclidean model. To provide further confirmation of this, it would be useful to have 
some low-temperature series to add to our high-temperature series: we hope to compute 
these in future work. As regards the Monte Carlo work, our strategy has been to try 
and compute accurate eigenvalues for small lattices, and use finite-size scaling to 
estimate the bulk limiting behaviour. For a first-order transition such as this, finite-size 
scaling is not such a powerful tool (Privman and Fisher 1983), and so it would be 
useful to have some data for larger lattices as well. In fact, Peczak and Landau (1989) 
have observed that for a very weak first-order transition (5-state Potts in two dimensions) 
one may even observe a crossover in finite-size scaling from apparent second-order 
behaviour on small lattices to first-order behaviour on large lattices. 

In any case, the good agreement between the series and Monte Carlo estimates in 
the high-temperature regime is sufficient to show that the stochastic truncation approach 
provides an accurate and efficient Monte Carlo technique. We hope this will encourage 
further applications of the method. 
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